Variations in life history characteristics of the deep-water giant ruby snapper (Etelis sp.) between the Indian and Pacific Oceans and application of a data-poor assessment

Corey B. Wakefield a, b, *, Ashley J. Williams ${ }^{\text {c, d,e }}$, Emily A. Fisher ${ }^{\text {a }}$, Norman G. Hall ${ }^{\text {a }}$, Sybrand A. Hesp ${ }^{\text {a }}$, Tuikolongahau Halafihi ${ }^{\text {f }}$, Jeremie Kaltavara ${ }^{\text {g }}$, Elodie Vourey ${ }^{\text {c }}$, Brett M. Taylor ${ }^{\text {h, }}{ }^{\text {i }}$, Joseph M. O’Malley ${ }^{\text {j}}$, Simon J. Nicol ${ }^{\text {c,k }}$, Brent S. Wise ${ }^{\text {a }}$, Stephen J. Newman ${ }^{\text {a,b }}$
${ }^{\text {a }}$ Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, Government of Western Australia, P.O. Box 20, North Beach 6920, Western Australia, Australia.
${ }^{\mathrm{b}}$ Department of Environment and Agriculture, Curtin University, GPO Box U1987, Perth, Western Australia, 6845, Australia.
${ }^{\text {c }}$ Oceanic Fisheries Programme, The Pacific Community, BP D5, 98848 Noumea, New Caledonia.
${ }^{\mathrm{d}}$ Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville 4811, Australia
${ }^{\mathrm{e}}$ Australian Bureau of Agriculture and Resource Economics and Sciences, Department of Agriculture, Canberra, Australian Capital Territory 2601, Australia
${ }^{f}$ Tonga Fisheries Division, Ministry of Agriculture and Food, Forests and Fisheries, PO Box 871, Nuku'alofa, Kingdom of Tonga
g Vanuatu Fisheries Department, Ministry of Agriculture, Livestock, Forestry, Fisheries and Biosecurity, PMB 9045, Port Vila, Vanuatu.
${ }^{\text {h }}$ Joint Institute for Marine and Atmospheric Research, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA.
${ }^{i}$ Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Western Australia 6009, Australia
${ }^{j}$ NOAA Fisheries, Pacific Islands Fisheries Science Center, 1845 Wasp Boulevard, Building 176, Honolulu, Hawaii 96818, USA.
${ }^{\mathrm{k}}$ Institute for Applied Ecology, University of Canberra, Bruce, ACT 2617, Australia.

* Corresponding author. Email: Corey.Wakefield@dpird.wa.gov.au. Phone: 61 (08) 92030111. Fax: 61 (08) 92030199


#### Abstract

The giant ruby snapper, Etelis sp., attains the largest size of any lutjanid in the IndoPacific and is one of the most valuable species harvested from deep-water fisheries along the continental and insular shelf margins throughout its broad geographic distribution. Despite this species supporting important commercial, artisanal and subsistence fisheries, quantitative assessments of the status of stocks have been limited by an absence of biological information, unreliable catch and effort statistics, and until recently, misidentification with a cryptic congener. This study aimed, firstly, to describe and compare the age, growth and reproductive characteristics of Etelis sp. between the eastern Indian and western central Pacific Oceans; and secondly, to provide an age-based assessment of the stock in north-western Australia, the only stock for which available data were sufficient to quantify stock status. Although the growth of Etelis sp. differed significantly between sexes and oceans, longevity was similar with a maximum age of 56 years recorded in the Pacific Ocean. Spawning of this species occurred over five months during the austral summer to mid-autumn (i.e. December to April) in the Indian Ocean, but was not well defined in the Pacific Ocean. The estimated ages at $50 \%$ maturity for females and males in the Indian Ocean were similar (i.e. 4-5 years), whereas lengths at $50 \%$ maturity differed ( $L_{50}^{\text {mat }}=527$ and 456 mm fork length, FL, respectively), but were consistent with corresponding differences in growth between sexes. Estimates of the relative female spawning potential ratio for Etelis sp. in north-western Australia suggest the status of this stock remained relatively unchanged from 1997 to 2011, at around 60\% of the unfished level. This assessment provides an example of the relative sustainable exploitation levels for this stock, and potentially other Eteline snappers that exhibit similar life history characteristics, particularly in locations where monitoring and assessments may be data and/or resource limited.


Keywords: Stock status; Etelinae; Age and growth; Reproduction; Maturity

## 1. Introduction

There is insufficient information available on the life history characteristics and stock status of most species of Etelinae in the Indo-Pacific region to inform management (Newman et al., 2016; 2017). In fact, some genera in this sub-family, such as the monotypic Randallichthys, are so rarely encountered that even their distribution is still relatively undefined (Newman, 2009; Wakefield et al., 2016). For some more heavily exploited species in this group, such as Etelis coruscans, despite being considered overfished in some locations (Hill et al., 2016; 2018), its life-history characteristics remain relatively unknown. Only recently the taxonomic revision of the highly valued nominal E. carbunculus identified a cryptic species pair that are morphologically similar, and now recognised as Etelis sp. (giant ruby snapper) and E. carbunculus (pygmy ruby snapper, Wakefield et al., 2014; Andrews et al., 2016). These two cryptic species are sympatric and typically co-occur in catches with varying abundances throughout their distribution. Thus, their previous misidentification has inevitably resulted in significant historical biases for key data inputs required for monitoring and assessment of their status.

The giant ruby snapper, Etelis sp., attains the largest size for its genus (> $100 \mathrm{~cm},>20$ kg, Williams et al., 2013; Wakefield et al., 2014) and, like most Etelis species, its life history is poorly understood. Regional and/or location-specific assessments of stock status for this species have not been undertaken or have mistakenly included data for its cryptic congener (Williams et al., 2013; 2015; Newman et al., 2016). Given the importance of this species to fisheries (Newman et al., 2016), there is a need to describe
its life history and ascertain whether this species shares the typical characteristics associated with similar deep-water lutjanids. For example, the closely related $E$. carbunculus exhibits a modest age at maturity (i.e. $\sim 5$ years) and longevity (i.e. 32 years), similar to many shallower water Lutjanidae, inferring a relatively similar population productivity (Newman and Dunk, 2003; Williams et al., 2017). Williams et al. (2017) examined the age-specific demography of $E$. carbunculus across $90^{\circ}$ of longitude and $20^{\circ}$ of latitude in the western central Pacific and eastern Indian Oceans and reported that growth differs significantly between oceans and sexes and in relation to latitude. Thus, stock assessments of Etelis species may need to consider regional variations in life history characteristics.

Deepwater Eteline snappers constitute important deep-water fisheries resources throughout their distribution, particularly around islands throughout the tropical and subtropical Indo-Pacific region (Williams and Nicol, 2012; Newman et al., 2016). These deep-water resources typically sustain small-scale fisheries offering economic and/or cultural value to many Indo-Pacific countries (Dalzell et al., 1996). Catches from these small-scale fisheries are biodiverse, with over 200 species from 93 genera reported in the western central Pacific Ocean (Dalzell and Preston, 1992). Only a small number of deepwater commercial fisheries targeting Etelis species exist, mostly in developed countries (Newman et al., 2016). Unfortunately, however, catch statistics for Etelis sp. from even these developed countries are unreliable due to misidentification with its cryptic congener. The proportion of $E$. sp. to $E$. carbunculus within catches varies markedly throughout their geographic distribution, for example, $E$. sp. is not represented in the
catches in Hawaii (Andrews et al., 2016), but comprises $\sim 99 \%$ of their combined catches in Indonesia (Mous et al., 2020). In north-western Australia, combined annual catches of Etelis sp. and E. carbunculus from both Commonwealth and State-managed commercial fisheries were first recorded in $c a$ 1993, with catches increasing to a peak of 70 t in the Commonwealth-managed fisheries in 2001 and 115 t in the State-managed fisheries in 2004. Since 2007, the combined annual catches for these two cryptic species have averaged $\sim 10 \mathrm{t}$ and 32 t in the Commonwealth and State-managed fisheries, respectively. To date, however, the life history characteristics and stock status of Etelis sp. in this region of the eastern Indian Ocean have not been determined.

This study examined the age-specific life history characteristics of Etelis sp. in the eastern Indian Ocean and compared it to those for this species in the western central Pacific Ocean to investigate the extent to which they differed across its broad geographic distribution. Specifically, we compared sex-specific age and length distributions, growth and mortality, annual spawning periodicity, and the lengths and ages at which females and males of this species mature between these oceanic regions. Recognising that opportunities to collect sufficient and representative samples for an age-based stock assessment are limited in most locations throughout this species range, this study also provides estimates of the relative female spawning potential ratio (SPR, based on female spawning-biomass-per-recruit), calculated using life history information and mortality derived from age-composition data to determine the stock status in north-western Australia. Unlike dynamic integrated assessment models, SPR can be estimated without a time series of catch and an index of abundance, which are not available for Etelis sp. The
results from this assessment provide useful information on sustainable exploitation levels for this and potentially other Eteline snappers that exhibit similar life history characteristics in other locations for which monitoring and assessment may be data and/or resource limited.

## 2. Methods

2.1 Sampling

In the eastern Indian Ocean, Etelis sp. were sampled from the upper continental slope along the north and west coasts of Western Australia, and from the island slopes of Christmas and Cocos (Keeling) Islands from a depth range of 150 to 480 m from 1996 to 2014 (Fig. 1). These samples were collected predominantly from commercial catches ( $85 \%$ ), with samples from recreational fishers and research surveys providing minor contributions ( $2 \%$ and $13 \%$, respectively). In the late 1990s these commercial catches were taken using demersal trawls, with more recent commercial fishing involving hook and line (since ca 2000). Samples collected onboard research surveys from the eastern Indian Ocean were caught using traps and lines. In the western central Pacific Ocean, samples of this species were collected from seamounts and island reef slopes in the Exclusive Economic Zones (EEZs) of New Caledonia, Vanuatu, Wallis and Futuna, Tonga, and Samoa (Fig. 1, Pacific Islands Fisheries Science Center, 2020). Samples from this region were collected from commercial catches (80\%) or research surveys (20\%) from 2012 to 2016 and were all obtained using hook and line.

For each Etelis sp. the fork length (FL) was measured to the nearest 1 mm (and occasionally to the nearest 5 mm during sampling in the western central Pacific Ocean) and the two sagittal otoliths were removed, washed and stored in envelopes or plastic vials. When possible, the wet weight $(W)$ of each fish was recorded to the nearest 0.1 g . For each region, an allometric relationship between length ( $L$, in mm FL) and weight ( $W$, in g ) was derived by fitting a linear function using least-squares to the log-transformed data: $W=\alpha_{W} L^{\beta_{W}}$, where $\alpha_{W}$ and $\beta_{W}$ are parameters of this allometric relationship (Quinn and Deriso, 1999). This equation was used to estimate the weights of Etelis sp. donated by fishers as frames (skeletons). The back-transformed estimates of weight were adjusted for the bias associated with the log transformation (Quinn and Deriso, 1999). The relationships between length and weight for Etelis sp. from the Indian and Pacific Oceans were tested for significant differences using a likelihood-ratio test (Cerrato, 1990).

### 2.2 Ageing and growth

Thin otolith sections were prepared using the methods recently described for Etelis sp. by Wakefield et al. (2017a). This involved embedding the sagittal otolith in epoxy resin and sectioning transversely through the primordium, perpendicular to the sulcus acusticus, using a low speed saw (Isomet ${ }^{\text {TM }}$ Buehler Ltd) with a diamond tipped blade. Prior to sectioning, the micrometer on each saw was calibrated to improve the consistency in the thickness of otolith sections. Otolith sections were cut thinly at $\sim 180-200 \mu \mathrm{~m}$, rinsed in $2 \%$ hydrochloric acid for $15-30$ seconds (Gauldie et al., 1990), and mounted on a glass slide with a cover slip using casting resin. Opaque zone counts from each otolith section
were derived using a dissecting microscope (fitted with 20x stereoscopic oculars) under reflected light at 40-60x magnification, and without any knowledge of fish size. Bomb radiocarbon dating has previously confirmed that a single opaque and translucent zone is deposited annually in the otoliths of Etelis sp. (Andrews et al., 2011). Otolith sections from these absolute aged fish $(n=3)$ provided a useful reference for the formation of growth zones in otolith sections of this species. Precision in opaque zone counts was deemed acceptable (i.e., Index Average Percent Error, IAPE < 5.5\%, Campana, 2001; Wakefield et al., 2017a) among readers ( $n=100$, CBW, BMT, SJN, AJW) with experience interpreting growth zones from thin otolith sections (Wakefield et al., 2010; 2015; 2017a; Williams et al., 2017). The ages of Etelis sp. were calculated using a combination of the date that they were captured, an assumed birth date corresponding to the peak in spawning (i.e., 1 January), the time of year when opaque zones in the majority of otoliths become delineated (i.e. 1 October), and the number of opaque zones.

The growth of female and male Etelis sp. from both the Indian and Pacific Oceans was described separately using the von Bertalanffy growth equation fitted to the length-at-age data. The form of the equation was:

$$
L_{a}=L_{\infty}\left(1-\exp \left[-k\left(a-t_{0}\right)\right]\right),
$$

where $L_{a}$ is the predicted fork length (mm) of fish at age $a$ (years), $L_{\infty}$ is the asymptotic length (mm) at an infinite age, $k$ is the growth coefficient, a constant that determines the rate (year ${ }^{-1}$ ) at which $L_{a}$ approaches $L_{\infty}$, and $t_{0}$ is the hypothetical age (years) at which fish would have zero length. Growth curves were fitted using least squares regression, and estimates of $L_{\infty}, k$, and $t_{0}( \pm 95 \%$ confidence limits, CLs) were determined by
bootstrapping, where 1,000 sets of parameters were obtained from the analysis of data produced by random resampling with replacement. The von Bertalanffy growth parameters and their lower and upper 95\% CLs were calculated as the median, 2.5 , and 97.5 percentiles, respectively, of the 1,000 bootstrap estimates. Growth curves were compared between sexes and oceanic regions using a likelihood-ratio test (Cerrato, 1990).
2.3 Spawning period and maturity analyses

When possible, the gonads from each fish were weighed $(G W)$ to the nearest 0.01 g , sexed and macroscopically allocated to a maturational stage using the criteria in Wakefield et al. (2010), i.e., stage I (immature/resting), stage II (developing), stage III (developed), stage IV (ripe), and stage V (spent). A subsample of freshly dissected gonads from fish caught in the Indian ( $n=56$ females and 27 males) and Pacific Oceans ( $n=270$ females and 269 males) were preserved in pH neutral $10 \%$ buffered formalin for investigating histological characteristics. Medial transverse sections of the preserved gonads were embedded in paraffin wax, sectioned at $5 \mu \mathrm{~m}$, mounted on glass slides, and stained with Mayer's haematoxylin and eosin. Gonad histology was used to confirm that the reproductive mode of Etelis sp. is gonochoristic. The gonadosomatic index (GSI) for each fish was determined using the equation, GSI $=100 G W / W$, where $G W$ and $W$ are the wet weight of the gonad and whole fish in g , respectively. The data for gonadal stages and GSIs for fish of each sex were pooled for each calendar month for the Indian and Pacific Ocean regions separately. The spawning periods of Etelis sp. for the Indian and Pacific Oceans were determined on the basis of annual trends in mean monthly GSIs and
the monthly prevalences of females and males ( $\geq$ the length at $50 \%$ maturity) with developed (stage III) and/or spawning (stage IV) gonads.

The lengths by which $50 \%$ of female and male Etelis sp. have attained sexual maturity ( $L_{50}^{\text {mat }}$ ) during the spawning period were estimated for the Indian Ocean separately, using logistic regression to determine the relationships with length of the probability that a female or male during the spawning period possessed gonads at stages II-V. It is therefore assumed that during the spawning period, fish with gonads of these stages would have the potential to spawn, were spawning, or had recently spawned and were thus regarded as mature, and that fish with gonads at stage I would have remained immature. The maturity ogive used was a re-parameterised form of the logistic equation (e.g., Punt and Kennedy, 1997; Hesp et al., 2004; Wakefield et al., 2007):

$$
\psi_{L}=\left\{1+\exp \left[-\log _{e}(19) \frac{\left(L-L_{50}^{\mathrm{mat}}\right)}{\left(L_{95}^{\mathrm{mat}}-L_{50}^{\mathrm{mat}}\right)}\right]\right\}^{-1},
$$

where $\psi_{L}$ is the proportion of mature Etelis sp. at a particular fork length $L$, and $L_{50}^{\text {mat }}$ and $L_{95}^{\mathrm{mat}}$ are the estimated lengths by which 50 and $95 \%$ of Etelis sp. have attained sexual maturity, respectively. The $L_{50}^{\text {mat }}$ and $L_{95}^{\text {mat }}$ for the females and males in this oceanic region, and their $95 \%$ CLs, were determined by bootstrapping, where 2,000 sets of estimates of the logistic equation parameters were obtained from the analysis of data produced by random resampling, with replacement. The point estimates and 95\% CLs of the proportions of mature fish in each length class were calculated as the median, 2.5 and 97.5 percentiles, respectively, of the 2,000 bootstrap estimates. The same approach was employed to determine the relationship between the proportion mature with respect to age, $a$, i.e.:

$$
\psi_{a}=\left\{1+\exp \left[-\log _{e}(19) \frac{\left(a-A_{50}^{\mathrm{mat}}\right)}{\left(A_{95}^{\mathrm{mat}}-A_{50}^{\mathrm{mat}}\right)}\right]\right\}^{-1},
$$

where $A_{50}^{\text {mat }}$ and $A_{95}^{\text {mat }}$ are the ages by which 50 and $95 \%$ of individuals were mature.

In contrast to data for the Indian Ocean, and noting that sample sizes for the species was much lower for data from the Pacific Ocean, trends for the lengths and ages at which female and male Etelis sp. attained sexual maturity in the Pacific Ocean did not exhibit a typical logistic relationship and thus no such relationship was fitted. Instead, the $L_{50}^{\text {mat }}$ for female and male Etelis sp. from this oceanic region were derived from the average life history invariant ratio of $L_{50}^{\mathrm{mat}} / L_{\infty}$ for females and males from the Indian Ocean (i.e. $L_{50}^{\text {mat }} / L_{\infty}=0.67$ ). Note this value of $L_{50}^{\text {mat }} / L_{\infty}$ for Etelis sp. is consistent with those typically exhibited for most teleosts (Prince et al., 2015; Thorson et al., 2017).

### 2.4 Stock assessment for north-western Australia

In the absence of a reliable time series of catch and an abundance index required to construct a dynamic integrated model for assessing Etelis sp. in north-western Australia, the status of the stock was examined using catch curve and per-recruit analyses based on age composition data. Common to these methods is the assumption of the population being in an equilibrium state, with recruitment and total mortality remaining constant over the lifespan of fully-recruited fish (Ricker, 1975; Goodyear, 1993). Although simulations have shown that departures from these assumptions can result in biased catch curve outputs (Dunn et al., 2002), the age-composition data collected for Etelis sp. in north-western Australia provided no indication of significant inter-annual recruitment variability or change in total mortality among the year classes represented by each sample
(see results). Stock status for this species in the Pacific Ocean was not assessed as sample sizes were relatively small.

The instantaneous rate of fishing mortality $(F)$ for Etelis sp. in north-western Australia was estimated by fitting a catch curve model separately to each of the two age composition samples, collected by trawling in $1997(n=471)$ and by line fishing in 2011 ( $n=418$ ). The fitted catch curve was essentially the same as that described by Thorson and Prager (2011), which allows for estimation of logistic selectivity at age but assumes a constant natural mortality $(M)$. Simulation testing of multiple catch curve methods by Thorson and Prager (2011) demonstrated that a catch curve model with logistic selectivity performs better than one that assumes knife-edge selectivity, markedly improving the accuracy of $F$ estimates.

The catch curve model applied to the Etelis sp. assessment for north-western Australia describes the logistic selectivity of fish at age $a, S_{a}$, as:

$$
S_{a}=\left\{1+\exp \left[-s\left(a-A_{50}^{\text {sel }}\right)\right]\right\}^{-1},
$$

where $A_{50}^{\text {sel }}$ is the age by which $50 \%$ of individuals are selected by the fishery and $s$ is the slope of the logistic curve at $A_{50}^{\text {sel }}$. The fishing mortality at age, $F_{a}$, was calculated as:

$$
F_{a}=S_{a} F,
$$

and total mortality at age, $Z_{a}$, was determined from natural mortality, $M$, as:

$$
Z_{a}=F_{a}+M .
$$

Recognising the difficulty of reliably estimating $M$ using indirect methods, several alternative values of this parameter for Etelis sp. in north-western Australia were considered. Natural mortality was first calculated as:

$$
M=-\log _{e}(0.01) / A_{\max }
$$

based on the theoretical assumption that $1 \%$ of individuals survive to the maximum observed age $A_{\text {max }}$ in this region (Quinn and Deriso, 1999). To test the sensitivity of results to this assumption, values of $M$ were also calculated from empirical mortality equations for fish described by Hoenig (1983) and Then et al. (2015) as:

$$
\begin{gathered}
M=\exp \left(1.46-\left(1.01 \log _{e}\left(A_{\max }\right)\right)\right) \text { and } \\
M=4.899 A_{\max }^{-0.916},
\end{gathered}
$$

where these estimates relate to approximately $1.5 \%$ and $0.12 \%$ of fish surviving to the maximum age, respectively. Another estimate of $M$ was calculated from the empirical equation of Pauly (1980), which relates mortality to von Bertalanffy growth parameters and water temperature, i.e.:
$M=\exp \left(-0.0066-\left(0.279 \log _{e}\left(L_{\infty}\right)\right)+\left(0.6543 \log _{e}(k)\right)+\left(0.4634 \log _{e}(T)\right)\right)$, where $L_{\infty}$ (in cm ) and $k$ are the growth parameters estimated for Etelis sp. in this study and $T$ is the mean water temperature $\left(\sim 15{ }^{\circ} \mathrm{C}\right)$ at the depths at which this species occurs in north-western Australia.

Setting survival at age zero, $\widehat{N}_{a=0}$, to 1 , the expected number of survivors per recruit for all ages above zero were calculated as:

$$
\widehat{N}_{a}=\widehat{N}_{a-1} \exp \left[-Z_{a-1}\right] .
$$

The estimated catch per recruit at age, $\hat{C}_{a}$, was derived from the Baranov catch equation, i.e.:

$$
\hat{C}_{a}=\widehat{N}_{a}\left(F_{a} / Z_{a}\right)\left(1-\exp \left[-Z_{a}\right]\right)
$$

while the expected catch proportion at age, $\widehat{P}_{a}$, assuming constant annual recruitment, was calculated as:

$$
\hat{P}_{a}=\hat{C}_{a} / \sum_{a=0}^{A} \hat{C}_{a} .
$$

The maximum age assumed for the analysis, $A$, was set well above the observed maximum recorded age in the samples, $A_{\text {max }}$. Assuming that observed frequencies of fish at age, $f_{a}$, represent samples from a multinomial distribution of the expected proportions of fish at age, the multinomial log-likelihood $\lambda$ was calculated as:

$$
\lambda=\sum_{a=0}^{A} f_{a} \log _{e} \hat{P}_{a}
$$

The model was fitted to data by maximizing $\lambda$ using Solver in Microsoft Excel.

Bootstrap resampling methods (Efron, 1982; Efron and Tibshirani, 1986) were applied to estimate uncertainty around catch curve estimates of $F, A_{50}^{\text {sel }}$ and $s$, with separate analyses undertaken for each sampling period. From each observed age composition with sample size $n, 1,000$ data sets were generated by randomly drawing $n$ values with replacement from that sample. The catch curve model was then fitted separately to the 1,000 resampled age compositions generated for each sampling year (1997 and 2011) to determine the point estimate and the lower and upper $95 \%$ CLs for each parameter.

The bootstrapped catch curve estimates of fishing mortality and age-based logistic selectivity from each sampling period were next applied to calculate the ratio of
equilibrium spawning potential of Etelis sp., relative to that of an unfished stock. The analyses applied two alternative equilibrium models, both which assumed an annual time step and incorporated information about the growth and maturity of Etelis sp. from northwestern Australia as estimated in this study. Firstly, the female spawning potential ratio (SPR, based on female spawning biomass per recruit, i.e. SBPR) was estimated using a traditional per-recruit model assuming constant recruitment (Goodyear, 1993). For a given level of fishing mortality $F$, female spawning biomass-per-recruit was calculated according to the per-recruit model as:

$$
\operatorname{SBPR}_{F}=\sum_{a=0}^{A} \rho W_{a} \psi_{a} \exp \left(-Z_{a}\right),
$$

where $\rho$ is the proportion of recruits that are female (set to 0.5 , assuming a 1:1 sex ratio), $W_{a}$ is the weight of fish at age $a$ (based on the estimated length-weight relationship and von Bertalanffy growth curve for females), and $\psi_{a}$ is the proportion of females that have attained maturity at age $a$. Female SPR was then calculated as:

$$
\operatorname{SPR}=\mathrm{SBPR}_{F} / \mathrm{SBPR}_{F=0},
$$

where $\mathrm{SBPR}_{F=0}$ is the unfished female spawning biomass-per-recruit.

Considering the assumption of constant recruitment in the traditional per-recruit analysis can be difficult to satisfy (Punt et al., 1993; Horbowy and Luzeńczyk, 2012), a second age-structured model that incorporates a stock-recruitment relationship was used to account for the potential effect of fishing on recruitment of Etelis sp. when estimating the equilibrium level of relative spawning biomass (Horbowy and Luzeńczyk, 2012). It was assumed that this stock-recruitment curve is of the form described by Beverton and Holt
(1957), where the expected recruitment, $R$, may be calculated from spawning stock biomass of females, $B$, as:

$$
R=B /(\alpha+\beta B),
$$

where $\alpha$ and $\beta$ are parameters that determine the shape of the relationship. This equation may be reparametrised into an alternative form that employs a steepness parameter, $h$, i.e., the proportion of the unexploited equilibrium recruitment expected to recruit when spawning biomass is reduced to $20 \%$ of its unfished equilibrium level (Mace and Doonan, 1988). If the stock-recruitment relationship is of the Beverton and Holt form and the population of fish is at equilibrium for a given value of $F$, the proportion to which spawning female biomass is reduced from its unfished equilibrium level, i.e. the relative spawning biomass, RSB, of females, may be calculated as:

$$
\mathrm{RSB}=(4 h \mathrm{SPR}+h-1) /(5 h-1)
$$

The steepness parameter $h$ was set to 0.75 , as recommended by Francis (1993).
Sensitivity analysis was undertaken to test the sensitivity of model outputs to uncertainty around this parameter, recognising that $h$ varies among species with differing life history characteristics (e.g., Myers et al., 2002).

In the absence of a direct estimate of $B_{\text {MSY }}$ for the stock, the estimates of SPR and RSB for females in 1997 and 2011 were compared to a proxy reference level based on a proportion of the unfished spawning biomass, $B_{0}$. Although several studies have shown that the relationship between $B_{\mathrm{MSY}}$ and $B_{0}$ is sensitive to the steepness of the stockrecruitment relationship, the current use of $0.3 B_{0}$ as a proxy threshold level for Statemanaged Western Australian fisheries (and in this study) is consistent with $B_{\text {MSY }}$
estimates for species where $h$ ~ 0.7-0.8 (e.g., Mangel et al., 2013; Punt et al., 2014). For Etelis sp., this threshold value also corresponded well to the estimated relative stock biomass at which fishing mortality generated the maximum long-term equilibrium yield (Horbowy and Luzeńczyk, 2012).
3. Results
3.1 Length and age compositions, and length-weight relationship

A total of 2,230 Etelis sp. were sampled from the eastern Indian Ocean, ranging in length from 157 to $1,127 \mathrm{~mm}$ FL. The length frequency distributions of females and males of Etelis sp. from the Indian Ocean differed markedly (Fig. 2). The distribution of lengths for both sexes were essentially unimodal. However, females comprised a greater proportion of larger individuals with a broad mode of 575-725 mm FL compared to a narrow mode of 525-625 mm FL for males. In this region, no sampled males were larger than 770 mm FL, whereas $20 \%$ of sampled females exceeded this length $(n=271>770$ mm FL).

In comparison, although fewer Etelis sp. $(n=733)$ were sampled from the western central Pacific Ocean, they had a very similar range in lengths to that of samples from the Indian Ocean (i.e. 140 to $1,150 \mathrm{~mm}$ FL, Fig. 2). Unlike the Indian Ocean, the length compositions of females and males from the Pacific Ocean were very similar, with a relatively even distribution in frequencies across their length range and a broad mode at $\sim 650 \mathrm{~mm}$ FL for both sexes (Fig. 2). There was a less conspicuous higher abundance of
larger females sampled from the Pacific Ocean, with 33 females compared to only two males greater than 900 mm FL (Fig. 2).

Despite the length-frequency compositions of Etelis sp. being markedly different between females and males in the Indian Ocean, the age-frequency distributions were similar (Fig. 2). The distributions in ages for both sexes exhibited a mode at $\sim 10$ years and ranged from 1-42 years for females and 1-36 years for males. The age-frequencies for this species from the Pacific Ocean had a unimodal distribution with a mode at $\sim 5$ years for both females and males and, with the exception of two old males (i.e. 48 and 56 years), the age ranges were similar at 3-43 years for females and 1-44 years for males (Fig. 2).

The range in whole weights obtained for Etelis sp. were similar between the Indian (46 to $31,000 \mathrm{~g}, n=709$ ) and Pacific Oceans ( 60 to $26,000 \mathrm{~g}, n=692$ ). There was no significant difference in the length-weight relationships between sexes or oceans (all $p>0.05$ ), resulting in a combined equation for all samples of $W=0.00001884 L^{2.997}\left(r^{2}=0.99\right)$.
3.2 Ageing precision, longevity and growth trajectories

The precision of opaque zone counts from thin transverse sections of otoliths was acceptable, with an IAPE of $5.1 \%(\mathrm{n}=100$, range $=1$ to 38 opaque zones) for counts by the two readers (CBW and AJW). Opaque zone counts between readers concurred or differed by one for $79 \%$ of fish and no counts differed by more than three. The longevity of female Etelis sp. was very similar between the Indian and Pacific Oceans (female $A_{\text {max }}$ $=42$ vs 43 years, respectively, Table 1 ), but varied markedly for males (male $A_{\max }=36$
vs 56 years, respectively, Table 1), with the ages of eight males in the Pacific Ocean exceeding that recorded for the oldest male in the Indian Ocean by $\geq 20$ years.

The von Bertalanffy growth curves provided good fits to the lengths at age for female and male Etelis sp. in each oceanic region, and $t_{0}$ values did not differ from zero by more than 2 years (Table 1, Fig. 3). The growth curves differed significantly between females and males within each oceanic region and between sexes from the different regions (all $p$ $<0.05$, Figs 3 and 4). In both oceanic regions, growth was sexually dimorphic with females attaining an asymptotic length $\left(L_{\infty}\right)$ of 190 mm larger than males, and their respective corresponding $k$ values were much lower for females than males (Table 1). For both sexes, Etelis sp. attained a larger $L_{\infty}$ in the Pacific than in the Indian Ocean (Table 1, Fig. 4).
3.3 Spawning period, and length and age at maturity

In the eastern Indian Ocean, the mean monthly GSIs for females increased sharply from 1.0 in December to 5.4 in January before gradually declining over the four ensuing months to 0.7 in May (Fig. 5). The prevalence of Etelis sp. with developed or ripe staged ovaries (i.e., stages III and IV) exceeded $20 \%$ in each month from January to April, with a peak of $98 \%$ in January (Fig. 5). Similarly, the mean monthly GSIs for males increased from 0.7 in October to a peak of 2.8 in January before declining to 0.6 in April (Fig. 5). Hence, the spawning period for Etelis sp. in this region predominantly occurs over five months from December to April with a conspicuous peak in January. In contrast, the trends in mean monthly GSIs and prevalence of ovaries in spawning condition (i.e.,
stages III and IV) in the western central Pacific Ocean did not exhibit a similar clearly defined annual spawning period. In this region, although the months with the highest GSIs occurred at a similar time to the Indian Ocean (i.e., January and February), the mean monthly GSIs never exceeded 2.0 for either sex (Fig. 5). Further, the months when the prevalence of developed or ripe staged ovaries (i.e., stages III and IV) exceeded $20 \%$ occurred over a longer period of approximately seven months from October to April, but were highest from January to April which corresponded with the peak spawning period in the Indian Ocean (Fig. 5). It should be noted that the number of samples collected in each month in this region were lower than those from the Indian Ocean.

The smallest mature Etelis sp. recorded from the Indian Ocean was 517 mm FL for females and 422 mm FL for males (Fig. 6), and the youngest mature individual was 4 years of age for both sexes (Fig. 7). Although the fork length of 527 mm by which $50 \%$ of females of Etelis sp. collected from the Indian Ocean during the main spawning months of January and February had attained sexual maturity is larger than the 456 mm of the males (Table 2; Fig. 6), the ages by which $50 \%$ of females and males had attained maturity were similar (Table 2; Figs 6 \& 7). Considering the lengths at $50 \%$ maturity for females and males occurred at similar proportions of their corresponding asymptotic lengths ( $63 \%$ and $70 \%$, respectively), these differences in the length at maturity likely correspond to an invariant relationship with growth (i.e. $L_{50}^{\mathrm{mat}} / L_{\infty}$ ).

The smallest mature Etelis sp. recorded from the Pacific Ocean was 530 mm FL for females and 390 mm FL for males, and the youngest mature individual was 4 years of age
for males and 5 years for females (Figs $6 \& 7$ ). The trends in the proportion of mature Etelis sp. did not exhibit a typical logistic relationship with increasing length and age for either sex from samples collected across the western central Pacific Ocean during the main spawning months of January to April (Figs 6 \& 7). Thus, the lengths and ages by which this species have attained sexual maturity were not estimated for this region.

### 3.4 Stock status in north-western Australia

The catch curve models, which assumed age-based logistic selectivity, provided good visual fits to age composition samples of Etelis sp. from 1997 and 2011, with expected values closely reflecting the observed data (Figs 8a, b). Point estimates of fishing mortality ( $F=0.038$ and 0.052 year $^{-1}$ in 1997 and 2011, respectively) and associated upper $95 \%$ CLs (Table 3) were well below the value for natural mortality $(M)$ of 0.11 year $^{-1}$, corresponding to the assumption that $1 \%$ of individuals survive to the maximum observed age of 42 years for Etelis sp. in north-western Australia. This suggests that, on average over the life span of the fish in the samples, exploitation has been relatively low. The application of a slightly lower estimate of $M\left(0.10\right.$ year $\left.{ }^{-1}\right)$ based on Hoenig's (1983) empirical mortality equation for fish did not markedly affect estimates of $F$, whilst using higher $M$ estimates resulting from the equations of Then et al. (2015; $M=0.16$ year $^{-1}$ ) and Pauly ( $1980 ; M=0.31$ year $^{-1}$ ) yielded values of $F$ which were below zero, and therefore, were not considered biologically plausible for Etelis sp in north-western Australia. Estimates of selectivity at age differed markedly between the two sampling years, with individuals selected at an earlier age by trawling compared to line fishing (Table 3). The results indicate that $50 \%$ of Etelis sp. were selected by the
commercial trawl fishery at around 5 years, compared to 7 years by the commercial line fishery.

Based on catch curve estimates of mortality and selectivity from 1997 and 2011, the analyses of female relative spawning potential suggest the Etelis sp. stock in northwestern Australia has remained at around $60 \%$ of the unfished level over the years represented by the age composition samples (Figs 8c, d). As expected, the relationships between $F$ and the two alternative measures of spawning potential (SPR and equilibrium relative spawning biomass, RSB ) were relatively similar at low levels of mortality ( $F<$ 0.05 year $^{-1}$ ), but with the model accounting for the effect of fishing on recruitment providing less optimistic results than the traditional per-recruit analysis when exploitation increases (Fig. 8c). Selectivity had a marked impact on model outputs, with the spawning potential based on the earlier selectivity at age of fish in the trawl fishery rapidly reducing to a substantially lower level as $F$ increased than estimates based on the line fishery selectivity (Fig. 8c). A sensitivity analysis using different values to describe the steepness of the stock-recruitment relationship ( $h$, ranging from 0.6 to 0.9 ) showed that estimates of equilibrium RSB did not change more than 0.02 for any increase or decrease in $h$ by 0.05 (results not shown).

### 4.0 Discussion

This study provides the first estimates of age-based life history characteristics of the deep-water giant ruby snapper, Etelis sp., since its recent taxonomic separation from a cryptic congener, i.e. the pygmy ruby snapper, E. carbunculus (Wakefield et al., 2014;

Andrews et al., 2016). Thus, previous studies investigating the life history of Etelis sp. offer limited comparisons as samples used in those studies are highly likely to also include E. carbunculus. The life history parameters determined for Etelis sp. in this study were combined with mortality estimates derived from representative age structure data in equilibrium-based per-recruit models to assess the stock status of this highly valued species in north-western Australia. Where the strong equilibrium assumptions of these methods can be satisfied, assessments based on age-composition data may be useful for several deep-water fisheries across the Indo-Pacific region, particularly those in developing countries where complexities associated with subsistence and artisanal fisheries typically result in poor reporting of catch statistics (Newman et al., 2015; Newman et al., 2017; Hill et al., 2018), or even in developed countries where catch statistics may be pooled among a complex of species with disparate life histories (DeMartini, 2019). However, when applying such stock assessment approaches, there is a need to consider that the required life history parameter inputs may vary considerably across a species geographic range (e.g. Wakefield et al., 2017b; Williams et al., 2017). The Etelis sp. attains the largest size of any lutjanid in the Indo-Pacific region and this, along with an excellent palatability, affords it a high value among deep-water fishers. The largest individuals sampled during this study were $1,150 \mathrm{~mm}$ FL and 21 kg from New Caledonia in the Pacific Ocean and $1,218 \mathrm{~mm}$ FL and 24 kg from Exmouth in northwestern Australia. The growth of Etelis sp. varies significantly between sexes and oceans, with females attaining a length at age up to $\sim 20 \%$ greater than that of males and both sexes attaining a length at age of up to $\sim 15 \%$ larger in the Pacific than in the Indian

Ocean. These differences in growth between sexes and oceans identified for Etelis sp. follow the same trends as those determined by a recent study for the congener $E$. carbunculus (Williams et al., 2017). The longevities of female Etelis sp. are essentially the same between oceans (i.e., 42 years), and similar to that for males from the Pacific Ocean with the exception of the two oldest males (i.e. 48 and 56 years, sampled from Papua New Guinea and Fiji, respectively). Thus, despite the oldest male sampled from the Indian Ocean being only 36 years and considering sample sizes and fishing exploitation can influence estimates of maximum age, it appears the longevity of this species is similar across the Indo-Pacific region and can be up to 56 years of age. This is the oldest recorded age for any Etelis species and the second oldest record for the Etelinae, with the oldest being Pristipomoides filamentosus from the western central Pacific Ocean at $\sim 64$ years of age (Williams et al., 2015; Newman et al., 2016).

The annual spawning period of Etelis sp in the eastern Indian Ocean occurred over five months from the austral summer to mid-autumn (i.e., December to April), and exhibited a conspicuous peak in January. The spawning period for this species in the western central Pacific Ocean did not exhibit a clear annual trend, but spawning was recorded in most months from September to June. The poorly defined estimates of annual spawning period in the Pacific Ocean may have resulted from either relatively small samples sizes per month and/or annual variations in the timing of spawning among the numerous seamounts and island reef slopes sampled throughout this region. Additional evidence for the latter was exhibited by the higher proportions of immature (i.e., possessing gonads in a resting developmental stage) larger and older females and males sampled during
potential spawning months. The presence of these immature larger and older individuals in the samples also resulted in a poorly defined relationship between the proportion of mature females and males with increasing length and age in this region, and thus estimates of maturity using a typical logistic function were not estimated. Nonetheless, an approximate length at $50 \%$ maturity for Etelis sp in the Pacific Ocean can be inferred using a life history invariant relationship with growth (i.e., $L_{50}^{\mathrm{mat}} / L_{\infty}$ ) (Prince et al., 2014; Thorson et al., 2017). In the eastern Indian Ocean, the estimated length at $50 \%$ maturity for females and males occurred at similar proportions of their corresponding asymptotic lengths (i.e., $63 \%$ and $70 \%$, respectively). If these proportions are consistent for Etelis sp in the Pacific Ocean, then it is anticipated that the corresponding lengths at $50 \%$ maturity would be approximately 600 and 537 mm FL for females and males, respectively. If stock assessments for this species are to be performed in seamount and/or island slope locations throughout the western central Pacific Ocean, and require reproductive life history inputs, then future studies should consider investigating these parameters specifically for each location.

The results of the catch curve assessment of Etelis sp. in north-western Australia suggest that, over the periods represented by the age composition samples, the stock has experienced a relatively low level of exploitation, with the relative spawning potential of females estimated at around $60 \%$ of an unfished state. Currently, this stock is harvested from waters > 180 m deep by recreational-based fishers and both State (via line and trap fishing) and Commonwealth (via trawl fishing) managed commercial fisheries, creating overlapping jurisdictional boundaries. Although commercial catches of Etelis sp. and E.
carbunculus cannot be separated to species, the former is far more abundant in these catches (accounting for $\sim 97 \%$ of samples, see also Williams et al., 2017) and catches have remained relatively stable, ranging between 10 and 45 t per year across Commonwealth and State-managed fisheries since 2011. Thus, it is likely that the stock is currently at a similar level to that in 2011 when the most recent sample was collected. Unless exploitation by either fishery increases substantially, the risk of unacceptable stock depletion is low.

Despite the strong equilibrium assumptions of catch curve and per-recruit analyses, these methods are frequently used to assess the exploitation of stocks for which an index of abundance allowing application of more complex stock assessment models is not available (Punt et al., 1993; Thorson and Prager, 2011). For stocks that are not in steady states, a common situation for species where recruitment varies markedly between years and/or there have been recent changes to exploitation, catch curve estimates of fishing mortality are often negatively biased (e.g. Dunn et al., 2002) and result in overly optimistic assessments of stock status. The assumptions of the method thus need to be assessed carefully, and implications of the findings considered when drawing inferences from the results of such analyses. In this assessment the similarity of fishing mortality estimates for fully-selected fish, derived from age composition data collected 14 years apart by two very different fishing methods, indicates that exploitation of Etelis sp. has not changed markedly over this period. The lack of marked peaks and troughs in the age composition samples, which are often evident in species exhibiting substantial inter-
annual variability in recruitment, provides further support that these assumptions have been adequately satisfied in this assessment.

The importance of accounting for selectivity in stock assessments has been well recognised in the scientific literature (Thorson and Prager, 2011; Punt et al., 2014). Simple catch curve analyses that assume knife-edge selectivity can be very sensitive to the assumed age at which fish are considered fully recruited to the fishery (Smith et al., 2012). Moreover, for species where fish are not vulnerable to fishing gear until an older age (and larger size), as was demonstrated for Etelis sp. in the line fishery, an assessment of fishing mortality alone may not provide an accurate measure of overall exploitation. This is because the estimated fully-selected mortality may not be experienced by a large proportion of the stock that is not yet fully vulnerable to capture. Where some information on growth and maturity is available, or can be inferred from other studies, it is important to extend such assessments to estimate the relative spawning potential of the stock for comparison against biomass-based reference points (Goodyear, 1993; Mace and Sissenwine, 1993). Ultimately, an acceptable level of exploitation estimated for a stock will depend on a range of factors, including the age at which fish are vulnerable to fishing relative to that at which they mature. For Etelis sp., which attain maturity prior to becoming fully vulnerable to the line fishery, the stock can tolerate a higher level of fully-selected fishing mortality than it could if fished by the trawl fishery, which selects this species at a younger age. As exploitation increases, however, it becomes increasingly important to ensure that the effect of fishing on recruitment is adequately accounted for in the assessment.

Applying a dynamic population model, such as an integrated, statistical catch-at-age model, or a surplus-production model, to assess the status of Etelis sp. would overcome several of the strong assumptions inherent in equilibrium-based catch curve and per-

Recognising the difficulty of selecting appropriate reference points corresponding to $B_{\mathrm{MSY}}$, current default proxies used in harvest strategies for Australian fisheries resources vary among jurisdictions (e.g. Smith et al., 2013; Fletcher et al., 2016). The results of several simulation studies (Mangel et al., 2013; Punt et al., 2014) provide support that
$0.3 B_{0}$ represents a reasonable proxy for a species with an assumed high steepness of the stock-recruitment relationship of 0.7-0.8, particularly when used as a threshold below which exploitation will be reduced. For Etelis sp. a threshold value of $0.3 B_{0}$ also corresponded well to the estimated relative stock biomass at which fishing mortality generated the maximum long-term equilibrium yield. Considering the estimates of relative stock size for Etelis sp. from north-western Australia were well above these levels $\left(\sim 0.6 B_{0}\right)$, the stock in this region is highly likely to have experienced a sustainable level of exploitation.

## Acknowledgements

The authors graciously extend their appreciation toward fishers and colleagues for their assistance with the collection of samples. Logistical support for this study was provided by the Department of Primary Industries and Regional Development (DPIRD, Western Australia), the Pacific Community (New Caledonia), the Pacific Islands Fisheries Science Centre (NOAA Fisheries, Hawaii), the Ministry of Agriculture and Food, Forests and Fisheries (Kingdom of Tonga), and the Vanuatu Fisheries Department (Vanuatu).

Financial support for the collection of samples in the eastern Indian Ocean was provided by DPIRD; and in the Pacific Ocean was provided by the Australian Agency for International Development (AusAID), the French Pacific Fund, the Zone Économique de Nouvelle-Calédonie (ZoNéCo) Programme, and NOAA Fisheries. We also thank the reviewers for their constructive comments on earlier versions of this manuscript.

## References

Andrews, A.H., Kalish, J.M., Newman, S.J., Johnston, J.M., 2011. Bomb radiocarbon dating of three important reef-fish species using Indo-Pacific $\Delta^{14} \mathrm{C}$ chronologies. Marine and Freshwater Research 62, 1259-1269.

Andrews, K.R., Williams, A.J., Fernandez-Silva, I., Newman, S.J., Copus, J.M., Wakefield, C.B., Randall, J.E., Bowen, B.W., 2016. Phylogeny of deepwater snappers (Genus Etelis) reveals a cryptic species pair in the Indo-Pacific and Pleistocene invasion of the Atlantic. Molecular Phylogenetics and Evolution 100, 361-371.

Beverton, R.J.H., Holt, S.J., 1957. On the dynamics of exploited fish populations. Chapman and Hall, London.

Campana, S.E., 2001. Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. Journal of Fish Biology 59, 197-242.

Cerrato, R.M., 1990. Interpretable statistical tests for growth comparisons using parameters in the von Bertalanffy equation. Canadian Journal of Fisheries and Aquatic Sciences 47, 1416-1426.

Dalzell, P., Adams, T.J.H., Polunin, N.V.C., 1996. Coastal fisheries of the South Pacific Islands. Oceanography and Marine Biology: An annual review UCL Press, London 34, 395-531.

Dalzell, P., Preston, G.L., 1992. Deep reef slope fishery resources of the South Pacific: a summary and analysis of the dropline fishing survey data generated by the activities of the SPC Fisheries Programme between 1974 and 1988. South Pacific Commision, Noumea, New Caledonia.

DeMartini, E.E., 2019. Hazards of managing disparate species as a pooled complex: A general problem illustrated by two contrasting examples from Hawaii. Fish and Fisheries early view, DOI: 10.1111/faf. 12404.

Dunn, A., Francis, R.I.C.C., Doonan, I.J., 2002. Comparison of the Chapman-Robson and regression estimators of Z from catch-curve data when non-sampling stochastic error is present. Fisheries Research 59, 149-159.

Efron, B., 1982. The bootstrap, jacknife and other resampling plans. Society for Industrial and Applied Mathematics CBMS National Science Foundation Monograph 38.

Efron, B., Tibshirani, R., 1986. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science 1, 54-75.

Fletcher, W.J., Wise, B.S., Joll, L.M., Hall, N.G., Fisher, E.A., Harry, A.V., Fairclough, D.V., Gaughan, D.J., Travaille, K., Molony, B.W., Kangas, M., 2016.

Refinements to harvest strategies to enable effective implementation of

Ecosystem Based Fisheries Management for the multi-sector, multi-species fisheries of Western Australia. Fisheries Research 183, 594-608.

Francis, R.I.C.C., 1993. Monte Carlo evaluation of risks for biological reference points used in New Zealand fishery assessments. in: Smith S.J., Hunt J.J., Rivard D., eds. Risk evaluation and biological reference points for fisheries management. Canadian Special Publication of Fisheries and Aquatic Sciences No. 120.

Gauldie, R.W., Davies, N.M., Coote, G., Vickridge, I., 1990. The relationship between organic material and check rings in fish otoliths. Comparative Biochemistry and Physiology 97A, 461-474.

Goodyear, C.P., 1993. Spawning stock biomass per recruit in fisheries management: foundation and current use. Canadian Special Publication of Fisheries and Aquatic Sciences, 67-82.

Hesp, S.A., Potter, I.C., Hall, N.G., 2004. Reproductive biology and protandrous hermaphroditism in Acanthopagrus latus. Environmental Biology of Fishes 70, 257-272.

Hill, N.J., Peatman, T., Wakefield, C.B., Newman, S.J., Halafihi, T., Kinch, J., Edwards, C.T.T., Nicol, S.J., Williams, A.J., 2018. Improving guidelines for implementing harvest strategies in capacity-limited fisheries - Lessons from Tonga's deepwater line fishery. Marine Policy 98, 85-91.

Hill, N.J., Williams, A.J., Peatman, T., Nicol, S.J., Halafihi, T., 2016. Application of a harvest strategy to resource-limited deepwater snapper fisheries. SPC Fisheries Newsletter. Pacific Community, New Caledonia.

Hoenig, J.M., 1983. Empirical use of longevity data to estimate mortality rates. Fishery Bulletin 82, 898-903.

Horbowy, J., Luzeńczyk, A., 2012. The estimation and robustness of FMSY and alternative fishing mortality reference points associated with high long-term yield. Canadian Journal of Fisheries and Aquatic Sciences 69, 1468-1480.

Mace, P.M., Doonan, I.J., 1988. A generalised bioeconomic simulation model for fish population dynamics. MAFFish, NZ Ministry of Agriculture and Fisheries, Wellington, New Zealand.

Mace, P.M., Sissenwine, M.P., 1993. How much spawning per recruit is enough? in: Smith S.J., Hunt J.J., Rivard D., eds. Canadian Special Publication of Fisheries and Aquatic Sciences No 120.

Mangel, M., MacCall, A.D., Brodziak, J., Dick, E.J., Forrest, R.E., Pourzand, R., Ralston, S., 2013. A perspective on steepness, reference points, and stock assessment. Canadian Journal of Fisheries and Aquatic Sciences 70, 930-940.

Mous, P.J., Wawan, B.I., Pet, J.S., 2020. Deepwater demersal fisheries targeting snappers and groupers in Indonesia. TNC-IFCP Technical Paper, The Nature Conservancy Indonesia Fisheries Conservation Program.

Myers, R.A., Barrowman, N.J., Hilborn, R., Kehler, D.G., 2002. Inferring Bayesian Priors with Limited Direct Data: Applications to Risk Analysis. North American Journal of Fisheries Management 22, 351-364.

Newman, S.J., 2009. First record of Randall's snapper Randallichthys filamentosus (Perciformes: Lutjanidae) from the eastern Indian Ocean (north-western Australia). Journal of Fish Biology 75, 1513-1517.

Newman, S.J., Dunk, I.J., 2003. Age validation, growth, mortality and additional population parameters of the goldband snapper (Pristipomoides multidens) off the Kimberley coast of northwestern Australia. Fishery Bulletin 101, 116-128.

Newman, S.J., Wakefield, C.B., Williams, A.J., O'Malley, J.M., Nicol, S.J., DeMartini, E.E., Halafihi, T., Kaltavara, J., Humphreys, R.L., Taylor, B.M., Andrews, A.H., Nichols, R.S., 2015. International workshop on methodological evolution to improve estimates of lige history parameters and fisheries management of datapoor deep-water snappers and groupers. Marine Policy 60, 182-185.

Newman, S.J., Wakefield, C.B., Williams, A.J., O’Malley, J.M., Taylor, B.M., Nicol, S.J., Nichols, R.S., Hesp, S.A., Hall, N.G., Hill, N., Ong, J.J.L., Andrews, A.H., Wellington, C.M., Harvey, E.S., Mous, P., Oyafuso, Z.S., Pardee, C., Bunce, M., DiBattista, J.D., Moore, B.R., 2017. International workshop on advancing methods to overcome challenges associated with life history and stock assessments of data-poor deep-water snappers and groupers. Marine Policy 79, 78-83.

Newman, S.J., Williams, A.J., Wakefield, C.B., Nicol, S.J., Taylor, B.M., O'Malley, J.M., 2016. Review of the life history characteristics, ecology and fisheries for deepwater tropical demersal fish in the Indo-Pacific region. Rev Fish Biol Fisheries, doi: 10.1007/s11160-11016-19442-11161.

Pacific Islands Fisheries Science Center, 2020. Life History Program Life History Estimates. https://inport.nmfs.noaa.gov/inport/item/59002.

Pauly, D., 1980. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. Journal du Conseil 39, 175-192.

Prince, J., Hordyk, A., Valencia, S.R., Loneragan, N., Sainsbury, K., 2014. Revisiting the concept of Beverton---Holt life-history invariants with the aim of informing datapoor fisheries assessment. ICES Journal of Marine Science 72, 194-203.

Prince, J., Victor, S., Kloulchad, V., Hordyk, A., 2015. Length based SPR assessment of eleven Indo-Pacific coral reef fish populations in Palau. Fisheries Research 171, 42-58.

Punt, A.E., Garratt, P.A., Govender, A., 1993. On an approach for applying per-recruit methods to a protogynous hermaphrodite, with an illustration for the slinger Chrysoblephus puniceus (Pisces: Sparidae). South African Journal of Marine Science 13, 109-119.

Punt, A.E., Hurtado-Ferro, F., Whitten, A.R., 2014. Model selection for selectivity in fisheries stock assessments. Fisheries Research 158, 124-134.

Punt, A.E., Kennedy, R.B., 1997. Population modelling of Tasmanian rock lobster, Jasus edwardsii, resources. Marine and Freshwater Research 48, 967-980.

Quinn, T.J., Deriso, R.B., 1999. Quantitative Fish Dynamics. Oxford University Press, New York.

Ricker, W.E., 1975. Computation and interpretation of biological statistics of fish populations. Bulletin of the Fisheries Research Board of Canada No. 191.

Smith, A.D.M., Smith, D.C., Haddon, M., Knuckey, I.A., Sainsbury, K.J., Sloan, S.R., 2013. Implementing harvest strategies in Australia: 5 years on. ICES Journal of Marine Science 71, 195-203.

Smith, M.W., Then, A.Y., Wor, C., Ralph, G., Pollock, K.H., Hoenig, J.M., 2012. Recommendations for catch-curve analysis. North American Journal of Fisheries Management 32, 956-967.

Then, A.Y., Hoenig, J.M., Hall, N.G., Hewitt, D.A., 2015. Evaluating the predictive performance of empirical estimators of natural mortality rate using information on over 200 fish species. ICES Journal of Marine Science: Journal du Conseil 72, 8292.

Thorson, J.T., Munch, S.B., Cope, J.M., Gao, J., 2017. Predicting life history parameters for all fishes worldwide. Ecological Applications 27, 2262-2276.

Thorson, J.T., Prager, M.H., 2011. Better catch curves: incorporating age-specific natural mortality and logistic selectivity. Transactions of the American Fisheries Society 140, 356-366.

Wakefield, C.B., Moore, G.I., Bertram, A.E., Snow, M., Newman, S.J., 2016. Extraordinary capture of a Randall's snapper Randallichthys filamentosus in the temperate south-eastern Indian Ocean and its molecular phylogenetic relationship within the Etelinae. Journal of Fish Biology 88, 735-740.

Wakefield, C.B., Moran, M.J., Tapp, N.E., Jackson, G., 2007. Catchability and selectivity of juvenile snapper (Pagrus auratus, Sparidae) and western butterfish (Pentapodis
vitta, Nemipteridae) from prawn trawling in a large marine embayment in Western Australia. Fisheries Research 85, 37-48.

Wakefield, C.B., Newman, S.J., Molony, B.W., 2010. Age-based demography and reproduction of hapuku, Polyprion oxygeneios, from the south coast of Western Australia: implications for management. ICES Journal of Marine Science 67, 1164-1174.

Wakefield, C.B., O’Malley, J.M., Williams, A.J., Taylor, B.M., Nichols, R.S., Halafihi, T., Humphreys, J.R.L., Kaltavara, J., Nicol, S.J., Newman, S.J., 2017a. Ageing bias and precision for deep-water snappers: evaluating nascent otolith preparation methods using novel multivariate comparisons among readers and growth parameter estimates. ICES Journal of Marine Science 74, 193-203.

Wakefield, C.B., Potter, I.C., Hall, N.G., Lenanton, R.C.J., Hesp, S.A., 2017b. Timing of growth zone formations in otoliths of the snapper, Chrysophrys auratus, in subtropical and temperate waters differ and growth follows a parabolic relationship with latitude. ICES Journal of Marine Science 74, 180-192.

Wakefield, C.B., Williams, A.J., Newman, S.J., Bunel, M., Boddington, D.K., Vourey, E., Fairclough, D.V., 2015. Variations in growth, longevity and natural mortality for the protogynous hermaphroditic eightbar grouper Hyporthodus octofasciatus between the Indian and Pacific Oceans. Fisheries Research 172, 26-33.

Wakefield, C.B., Williams, A.J., Newman, S.J., Bunel, M., Dowling, C.E., Armstrong, C.A., Langlois, T.J., 2014. Rapid and reliable multivariate discrimination for two cryptic Eteline snappers using otolith morphometry. Fisheries Research 151, 100106.

Williams, A., Nicol, S., 2012. Improving biological knowledge of deepwater snapper in the Pacific. SPC Fisheries Newsletter 138, 4-5.

Williams, A.J., Loeun, K., Nicol, S.J., Chavance, P., Ducrocq, M., Harley, S.J., Pilling, G.M., Allain, V., Mellin, C., Bradshaw, C.J.A., 2013. Population biology and vulnerability to fishing of deep-water Eteline snappers. Journal of Applied Ichthyology 29, 395-403.

Williams, A.J., Newman, S.J., Wakefield, C.B., Bunel, M., Halafihi, T., Kaltavara, J., Nicol, S.J., 2015. Evaluating the performance of otolith morphometrics in deriving age compositions and mortality rates for assessment of data-poor tropical fisheries. ICES Journal of Marine Science 72, 2098-2109.

Williams, A.J., Wakefield, C.B., Newman, S.J., Vourey, E., Crespo, F.A., Halafihi, T., Kaltavara, J., Nicol, S.J., 2017. Oceanic, latitudinal, and sex-specific variation in demography of a tropical deepwater snapper across the Indo-Pacific region. Frontiers in Marine Science.

825 Table 1. von Bertalanffy growth parameters (estimates and associated $95 \%$ lower and upper confidence limits) for curves fitted to the fork lengths (FL) at age of female and male Etelis sp. from the eastern Indian and western central Pacific Oceans. $L_{\infty}$, hypothetical asymptotic length at an infinite age; $k$, growth coefficient; $t_{0}$, hypothetical age at zero length; $A_{\text {max }}$, maximum age; $L_{\text {max }}$, maximum length; $n$, sample size.

|  | $\begin{gathered} L_{\infty} \\ (\mathrm{mm}) \end{gathered}$ | $\begin{gathered} k \\ \left(\mathrm{yr}^{-1}\right) \end{gathered}$ | $\begin{gathered} t_{0} \\ (\mathrm{yr}) \end{gathered}$ | $\begin{gathered} A_{\max } \\ (\mathrm{yr}) \end{gathered}$ | $\begin{aligned} & L_{\max } \\ & (\mathrm{mm}) \end{aligned}$ | $n$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Eastern Indian Ocean |  |  |  |  |  |  |
| Female |  |  |  |  |  |  |
| Estimate (Low, Upp) | $\begin{gathered} 842 \\ (821,878) \end{gathered}$ | $\begin{gathered} 0.16 \\ (0.13,0.18) \end{gathered}$ | $\begin{gathered} -0.40 \\ (-1.29,0.00) \end{gathered}$ | 42 | 1127 | 982 |
| Male |  |  |  |  |  |  |
| Estimate <br> (Low, Upp) | $\begin{gathered} 648 \\ (637,661) \end{gathered}$ | $\begin{gathered} 0.23 \\ (0.20,0.26) \end{gathered}$ | $\begin{gathered} -0.25 \\ (-0.90,0.08) \end{gathered}$ | 36 | 899 | 605 |
| Western central Pacific Ocean |  |  |  |  |  |  |
| Female |  |  |  |  |  |  |
| Estimate (Low, Upp) | $952$ <br> $(909,1010)$ | $\begin{gathered} 0.11 \\ (0.08,0.14) \end{gathered}$ | $\begin{gathered} -1.84 \\ (-3.40,-0.31) \end{gathered}$ | 42 | 1150 | 253 |
| Male |  |  |  |  |  |  |
| Estimate <br> (Low, Upp) | $\begin{gathered} 767 \\ (747,799) \\ \hline \end{gathered}$ | $\begin{gathered} 0.18 \\ (0.14,0.22) \\ \hline \end{gathered}$ | $\begin{gathered} -0.09 \\ (-1.31,0.80) \\ \hline \end{gathered}$ | 56 | 1000 | 242 |

Table 2. Fork lengths (mm, FL) and ages (years) by which $50 \%$ and $95 \% ~\left(~ L_{50}^{\text {mat }}, L_{95}^{\text {mat }}\right.$, $A_{50}^{\text {mat }}$ and $A_{95}^{\mathrm{mat}}$, respectively) of female and male Etelis sp. have attained sexual maturity in the eastern Indian Ocean, together with $95 \%$ lower and upper confidence limits for these parameters and the minimum fork length and age of mature fish ( $L_{\min }$ and $A_{\text {min }}$ ) in that region.

|  | $L_{50}^{\text {mat }}$ | $L_{95}^{\text {mat }}$ | $L_{\min }$ | $n$ | $A_{50}^{\text {mat }}$ | $A_{95}^{\text {mat }}$ | $A_{\min }$ | $n$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Female |  |  |  |  |  |  |  |  |
| $\quad$ Estimate | 527 | 635 | 517 | 344 | 5.4 | 9.3 | 4 | 334 |
| $\quad$ (Low, Upp) | $(510,540)$ | $(603,666)$ |  |  | $(4.9,5.8)$ | $(8.2,10.6)$ |  |  |
| Male |  |  |  |  |  |  |  |  |
| $\quad$ Estimate | 456 | 502 | 422 | 235 | 4.4 | 5.6 | 4 | 226 |
| $\quad$ (Low, Upp) | $(436,472)$ | $(470,520)$ |  |  | $(4.2,4.7)$ | $(5.3,6.1)$ |  |  |

Figure captions
Figure 1. Locations in the eastern Indian Ocean ( $\mathrm{n}=26$ sites) and western central Pacific
Table 3. Catch curve estimates of fishing mortality ( $F$, based on estimates of natural mortality, $M$, derived using the equation described by Quinn and Deriso, 1999) of fullyselected fish and age-based selectivity parameters ( $A_{50}^{\text {sel }}$ and $s$ ) with associated $95 \%$ lower and upper confidence limits for Etelis sp. sampled from north-western Australia in 1997 and 2011. $n$, sample size.

|  | $F$ <br> $\left(\right.$ year $\left.^{-1}\right)$ | $A_{50}^{\text {sel }}$ <br> $($ years $)$ | $S$ <br> $\left(\right.$ year $\left.^{-1}\right)$ | $n$ |
| :---: | :---: | :---: | :---: | :---: |
| 1997 - Trawl 0.038 4.7 1.6 | 471 |  |  |  |
| Estimate <br> (Low, Upp) | $(0.025,0.054)$ | $(4.2,5.3)$ | $(1.1,2.3)$ |  |
| 201 <br> - Line | 0.052 | 7.1 | 1.2 | 418 |
| Estimate <br> (Low, Upp) | $(0.036,0.071)$ | $(6.5,7.8)$ | $(0.9,1.6)$ |  | Ocean ( $\mathrm{n}=114$ sites) where Etelis sp. were collected (circles).

Figure 2. Length (above) and age (below) frequency compositions for female (white bars, above x-axis) and male (grey bars, below x-axis) Etelis sp. from the eastern Indian Ocean (left) and western central Pacific Ocean (right). Dashed lines represent corresponding lengths and ages at $50 \%$ maturity ( $L_{50}$ and $A_{50}$, respectively) for females and males from the eastern Indian Ocean. Sample sizes shown ( $n$ ).

Figure 3. Length-at-age data for female (above) and male (below) Etelis sp. from the eastern Indian (left) and western central Pacific (right) Oceans, with fitted von
Bertalanffy growth curves (lines) and $\pm 95 \%$ confidence limits (dashed lines). Sample sizes shown ( $n$ ).

Figure 4. von Bertalanffy growth curves ( $\pm 95 \%$ confidence limits) for females (above) and males (below) of Etelis sp. from the eastern Indian (IO) and western central Pacific Oceans (PO).

Figure 5. Mean monthly gonadosomatic indices ( $\pm 1 \mathrm{SE}$, lines) of female (above) and male (below) Etelis sp. and percentage of females with developed or ripe ovaries (grey bars, stage III or IV) for fish $\geq L_{50}$ at maturity from the eastern Indian (left) and western central Pacific (right) Oceans. On the x -axis the open rectangles represent austral winter and summer months and closed rectangles spring and autumn months. Numbers above curves are monthly sample sizes.

Figure 6. Percentage frequency of female (top) and male (bottom) Etelis sp. with immature (stage I, white bars) and mature gonads (stages II - V, grey bars) in sequential 50 mm FL classes (sample sizes above) collected during the main spawning months from the eastern Indian (i.e. January and February) and western central Pacific (i.e. January to April) Oceans. Logistic curves and their $95 \%$ confidence limits (dashed lines) for the Indian Ocean were derived from the probability that a fish of a given FL is mature.

Figure 7. Percentage frequency of female (top) and male (bottom) Etelis sp. with immature (stage I, white bars) and mature gonads (stages II - V, grey bars) in sequential age cohorts (sample sizes above) collected during the main spawning months from the eastern Indian (i.e. January and February) and western central Pacific (i.e. January to April) Oceans. Logistic curves and their 95\% confidence limits (dashed lines) for the Indian Ocean were derived from the probability that a fish of a given age is mature.

Figure 8. Catch curves assuming logistic selectivity ( $\pm 95 \%$ CLs) fitted to age compositions for Etelis sp. collected from north-western Australia by (a) commercial trawling in 1997 and (b) commercial line fishing in 2011 (sample sizes shown).
(c) Relationships between fishing mortality and relative spawning biomass of females based on estimated trawl selectivity (1997, dark grey) and line selectivity (2011, light grey), where the upper lines of these relationships represent the female spawning potential ratio (SPR) and the lower lines represent the equilibrium relative spawning biomass (RSB). (d) SPR and RSB estimates ( $\pm 95 \%$ CLs) of females for 1997 and 2011 relative to a proxy threshold reference level for $B_{\mathrm{MSY}}$ based on a proportion of unfished spawning biomass (i.e. $0.3 B_{0}$ ).


Indian Ocean
Pacific Ocean




Indian Ocean
Pacific Ocean


Pacific Ocean


Indian Ocean

## Pacific Ocean




